انتشار مقاله آقای دکتر فلاحی عزیز در ژورنال بین المللی Studia Logica تحت عنوان A Second Pretabular Classical Relevance Logic را به ایشان تبریک میگویم. لازم به ذکر است این مقاله ارزشمند فعلاً به صورت آنلاین منتشر شده است.
لینک مقاله: https://link.springer.com/article/10.1007/s11225-017-9734-z
:Abstract
Pretabular logics are those that lack finite characteristic matrices, although all of their normal proper extensions do have some finite characteristic matrix. Although for Anderson and Belnap’s relevance logic R, there exists an uncountable set of pretabular extensions (Swirydowicz in J Symb Log 73(4):1249–۱۲۷۰, ۲۰۰۸), for the classical relevance logic KR=R+{(A&∼A)→B}KR=R+{(A&∼A)→B} there has been known so far a pretabular extension: LL (Galminas and Mersch in Stud Log 100:1211–۱۲۲۱, ۲۰۱۲). In Section 1 of this paper, we introduce some history of pretabularity and some relevance logics and their algebras. In Section 2, we introduce a new pretabular logic, which we shall name MM , and which is a neighbor of LL , in that it is an extension of KR. Also in this section, an algebraic semantics, ‘ MM -algebras’, will be introduced and the characterization of MM to the set of finite MM -algebras will be shown. In Section 3, the pretabularity of MM will be proved.
Keywords
RM KR Classical relevance logics Pretabularity
—————————-
برای دسترسی به فایل پی دی اف این مقاله، اینجا کلیک کنید.
دیدگاهتان را بنویسید